When Should Transfusion Services Request Blood Group DNA Testing?

Illinois Association of Blood Banks, Spring 2016

Glenn Ramsey, MD
Medical Director, Blood Banks
Northwestern Memorial Hospital
Lurie Children’s Hospital of Chicago
gramsey@nm.org

Department of Pathology, Feinberg School of Medicine
Northwestern University
Chicago, IL

RBC Blood Group Genotyping in Transfusion-Service Patients

- Sickle cell disease—broad phenotyping; Rh C status
- Complex antibody problems
 - Multiple and/or unidentified antibodies
 - High-frequency-antigen antibodies
 - Autoantibodies
- Antibody-antigen discrepancies
- Obstetrical problems
 - Maternal weak D and RhIG candidacy
 - Fetal typing; paternal D zygoticy
- Allogeneic stem cell transplant antibody problems

Disclosure

- Fetal RhD Genotyping
 - Spouse’s sister: pathologist
 - Former medical director of LabCorp
 - On board of directors of Sequenom, Inc.
 - Vendor for fetal D typing from maternal blood

DNA Analysis Methods - Overview

Polymerase Chain Reaction Amplification

Analytic Test Limitations

- Other nucleotide variants not tested for may affect:
 - Serological phenotype; e.g.:
 - Null variants elsewhere in exons, splice sites, promoter regions
 - Interactions with other blood groups or genes
 - Typing sera reactivity
 - DNA genotype results
 - Specificity sites of primers, probes, restriction enzymes
 - May cause false-negatives (allele dropout)
 - Or misinterpretations by analysis software

- RBC phenotypes are PREDICTED in genotyping
RBC Blood Group DNA Testing In/For Chicagoland (alphabetical order)

- American Red Cross, National Molecular Lab, Philadelphia, PA
 - BioArray HEA, RHD, RHCE, and lab-developed tests

- Heartland -> Blood Center of Wisconsin, Milwaukee, WI
 - Lab-developed tests: www.bcw.edu

- LifeSource -> Virginia Blood Services, Richmond, VA
 - Progenika ID Core XT ->
 - Grifols Immunohematology Center, San Marco, TX
 - Lab-developed tests

- Northwestern Memorial Hospital, Chicago, IL
 - BioArray HEA, and (spring 2016) RHD for weak D

Beads: BioArray and Progenika

- Hybridization of amplified patient DNA with selected probe sequences identifying polymorphisms

- Bead-based microarrays
 - BioArray HEA—multiple blood groups, including RHCE
 - BioArray RHD and RHCE variants

- Liquid bead suspension
 - Progenika ID CORE XT-multiple blood groups, including RHCE

Immucor BioArray BeadChip™

Test DNA: Extracted Amplified

BeadChip Readout

- Beads with amplified DNA fluoresce

 - Fluorescent image obtained of each patient’s chip
 - Image transmitted to BioArray to match up with bead map of that chip
 - Analysis returned from BioArray

BeadChip HEA Genotyping Signal Report

- 24 sets of probes, mostly single-nucleotide-polymorphism (SNP) pairs (blue/green)

Progenika BLOODchips™: Europe, Canada

- DNA processing
 - Labeling
 - Hybridization
 - Scan, analyze signals

- Avent ND, Br J Haematol 144:3, 2008
- Canadian Blood Services, Jan 2014
Progenika BLOODchips™
Grifols brochure, Spain

- ABO, H (Bombay)
- RHD zygosities
- RHD variants
- RHCE variants
- Kell, Kidd, Duffy, MNS
- Diego, Dombrock, Colton, Cartwright, Lutheran
- HPA platelet antigens

Progenika ID Core XT System

Grifols Progenika ID Core XT
Immucor BioArray PreciseType HEA

Phenotypes Predicted in Both Assays (high-frequency)

<table>
<thead>
<tr>
<th>ISBT Blood Group</th>
<th>Antigens/Phenotypes (nucleotide markers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>002 MNS</td>
<td>M, N, S, U S-s-U- S-s-U+<sup>mar</sup></td>
</tr>
<tr>
<td>004 RhCE</td>
<td>C, c, E, e VS, V (733G, 1006T)</td>
</tr>
<tr>
<td>005 Lutheran</td>
<td>Lu<sup>a</sup>, Lu<sup>b</sup></td>
</tr>
<tr>
<td>006 Kell</td>
<td>K<sup>a</sup>, Kp<sup>a</sup>, Kp<sup>b</sup>, Jk<sup>a</sup>, Jk<sup>b</sup></td>
</tr>
<tr>
<td>008 Duffy</td>
<td>Fy<sup>a</sup>, Fy<sup>b</sup> Fy(a-b-) (GATA-67C) Fy(b+)<sup>sh</sup></td>
</tr>
<tr>
<td>009 Kidd</td>
<td>Jk<sup>a</sup>, Jk<sup>b</sup></td>
</tr>
<tr>
<td>010 Diego</td>
<td>D<sup>a</sup>, D<sup>b</sup></td>
</tr>
<tr>
<td>014 Dombrock</td>
<td>Do<sup>a</sup>, Do<sup>b</sup>, Hy, Jo<sup>a</sup></td>
</tr>
<tr>
<td>015 Colton</td>
<td>Co<sup>a</sup>, Co<sup>b</sup></td>
</tr>
</tbody>
</table>

Blood Center of Wisconsin
Common and RhCE Variant Panels

PCR-hybridization probes

<table>
<thead>
<tr>
<th>ISBT Blood Group</th>
<th>Antigens/Phenotypes (high-frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>002 MNS</td>
<td>M, N, S, U S-s-U- S-s-U+<sup>mar</sup></td>
</tr>
<tr>
<td>004 RhCE</td>
<td>C, c, E, e VS, V, VS, Crawford (Rh43)</td>
</tr>
<tr>
<td>005 Lutheran</td>
<td>Lu<sup>a</sup>, Lu<sup>b</sup></td>
</tr>
<tr>
<td>006 Kell</td>
<td>K<sup>a</sup>, Kp<sup>a</sup>, Kp<sup>b</sup>, Jk<sup>a</sup>, Jk<sup>b</sup></td>
</tr>
<tr>
<td>008 Duffy</td>
<td>Fy<sup>a</sup>, Fy<sup>b</sup></td>
</tr>
<tr>
<td>009 Kidd</td>
<td>Jk<sup>a</sup>, Jk<sup>b</sup></td>
</tr>
<tr>
<td>014 Dombrock</td>
<td>Do<sup>a</sup>, Do<sup>b</sup></td>
</tr>
</tbody>
</table>

www.bcw.edu, RBC genotyping, patient panels
Genotyping in Sickle Cell Disease:
Blood Phenotyping Partial C Status

RBC Antibodies in Sickle Cell Disease
• 319 adult SCD patients, Duke Univ.
 - 27%, alloantibodies—most frequent:
 • E, C, S, Fy\(\alpha/Fy\beta, K, Jk^{b}, M, D\)
 • Most, 2 or more antibodies
 - Warm autoantibodies in 25% of alloimmunized, vs <1% when no alloAb
 • Mechanisms in common?
 • [More DATs in workups?]
 - Worse survival in alloimmunized

Blood Bank Support in Sickle Cell Disease
• Chronic or frequent episodic RBC transfusions in some
• Extended phenotype matching
 • D, C, E, K
 • Some programs extend further -- Fy\(a/-\)Jk\(a/-\)
• Full phenotype is recommended for future antibody information
 • Fy\(a/-\)Jk\(a/-\), M, N, S, s
• SCD patient’s RBCs can be obtained even after transfusion
 • Hypotonic lysis, 0.3% NaCl: does not lyse sickle cells

RBC Phenotyping in Sickle Cell Patients
• Serological: licensed antisera
 • Specificities limited
• DNA phenotyping
 • More antigens
 • Several high-frequency antigens
 • Cost-effective compared to antisera

Notable African-American RBC Phenotype Frequencies

<table>
<thead>
<tr>
<th>ISBT Blood Group</th>
<th>Antigens/Phenotypes</th>
<th>African-American Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>002 MNS</td>
<td>S-s-U-, S-s-U+(^{+})</td>
<td>1-2% U-; 0.2-0.4% U+(^{+}) (1)</td>
</tr>
<tr>
<td>004 RhCE</td>
<td>V+, V+</td>
<td>32% and 30% V+ VS usu. on partial-e allele</td>
</tr>
<tr>
<td></td>
<td>Partial C (r(^{+}))</td>
<td>5-6% (2,3)</td>
</tr>
<tr>
<td>006 Kell</td>
<td>Js(b-)</td>
<td>1%</td>
</tr>
<tr>
<td>008 Duffy</td>
<td>Fy(a-b-)</td>
<td>67% [RBC FY*B GATA promoter]</td>
</tr>
<tr>
<td>014 Dombrock</td>
<td>H+y, Jo(a-)</td>
<td><1% and <1% (“0%”, Cauc.)</td>
</tr>
</tbody>
</table>

Technical Manual, AABB, 2014
1) Blood Group Antgens FactBook
2) Moulds JM, Transfusion 2013:53(2S):169A
3) Casas J, Transfusion 2015;55:1388
• 494 SCD patients—extended information in genotyping
 • FY: Fy(a-) 87.7%, at risk for anti-Fy\(a\)
 • FY(b-) 82.6%, of which 98.5% had GATA RBC promoter mutation
 • [although FY(a-b-) persons can occasionally make anti-Fy3]
 • Negatives for high-frequency antigens:
 • MNS: 5 (1%) U-neg, 3 (0.6%) U+var
 • Dombrock: 3 (0.6%) Jo(a-), 1 (0.2%) Hy-

Buccal-Mucosa RBC Genotyping in SCD Children
• Rampersand A, J Pediatr 2014;165:1003, Indiana Blood Center
• 92 children, ages 6 days–2.8 yr, identified in state SCD screening
• IN State Health Dept pilot project: buccal swabs, BioArray
 • 4% Js(b-), 2% Hy- Jo(a-), 1% Jo(a-), 8% likely carrying r'S
• 15 children had serologic typing for comparison
 • 3 had genotype-serotype discrepancies:
 • Genotyping correct in 2, sample contamination in 1
 • [BioArray HEA not FDA-approved for buccal mucosa]
• Reference Lab cost for HEA, 33 antigens:
 • 24% less than cost of serotyping for 12 antigens

RHD and RHCE genes—Chromosome 1: Partial-C and Other Hybrid Variants
• D+ or D-neg Rh gene in haplotype with RHCE gene, carrying Ce, cE, ce, or CE
 • D and CE genes transcribed in opposite directions
 • European D-negative gene shown here: deletion
 • Hybrid Rh box: marker for D-negative gene
 • Absence of D protein: anti-D readily made to D+ RBCs

Partial C Antigens in African-Americans
• (C)ce\(^6\), or r'S
 • D-CE(4-7)-D hybrid RHD gene
 • D-negative Rh protein carrying variant C+ antigen
 • The RHCE gene in cis is RHce: C-negative
 • When no normal C is present on the other RHCE gene, these persons can make anti-C
 • Figure: Reid ME, in Moulds JM, BeadChip Molec Immunohematol, 2011:101
Partial C (r^5) and Anti-C in Sickle Cell Patients

<table>
<thead>
<tr>
<th></th>
<th>Paris</th>
<th>Shreveport</th>
<th>Philadelphia</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^+ serotype</td>
<td>22.5%</td>
<td>112/494, 22.6%</td>
<td></td>
</tr>
<tr>
<td>Possible partial C</td>
<td>36/416</td>
<td>30/416</td>
<td>30/494</td>
</tr>
<tr>
<td>(BioArray)</td>
<td>8.4% of SCD</td>
<td>6.1% of SCD</td>
<td></td>
</tr>
<tr>
<td>Confirmed r^5</td>
<td>36/177 C^+</td>
<td>23/416</td>
<td>23/494</td>
</tr>
<tr>
<td></td>
<td>4.6% of all SCD</td>
<td>5.5% of all SCD</td>
<td>4.7% of all SCD</td>
</tr>
<tr>
<td>Anti-C</td>
<td>10/36</td>
<td>7/23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28% of partial C</td>
<td>30% of partial C</td>
<td></td>
</tr>
</tbody>
</table>

* Paris: Tournamille C, Transfusion 2010;50:13
* Shreveport: Moulds JM, Transfusion 2013;53(2S):169A
* Philadelphia: Casas J, Transfusion 2015;55:1388

Genotype Identification of r^5

- BioArray HEA, then serology:
 - 1) VS^+, V^- no normal C (no bp109 insert) in BioArray
 - Possible r^5
 - 2) Serotype with anti-C MS24 clone (Immucor, BioRad)
 - Positive in 75%—all r^5
 - Negative in 25%—none r^5
 - Progenika ID Core XT:
 - Probe for r^5 type 1—introns 3 breakpoint IVS3+3100G
 - 1% of r^5 are type 2, different breakpoint
 - BCW: allele-specific PCR, RHCE variant panel

- Moulds JM, Transfusion 2015;55:1418
- www.bcw.edu

Sickle Cell Disease Summary

- Complete phenotype improved by genotyping
- More information than conventional antisera
- Cost-effective
- Patients serotyped as C^+:
 - 20% have partial C antigen
 - Options: 1) give C-negative RBCs anyway
 - 2) Resolve by genotyping

RHD-CE Haplotypes in 110 Africans

- Nonpygmoid (n = 270)
 - D^w^D with partial e: 20%
 - D^w^-neg with partial e: some of 21%
 - Yellow wedges: Partial D 34%
 - Partial e 52% of haplotypes

Granier T, Transfusion 53:3009, 2013, ISBT variant categories added

Genotyping in Complex Antibody Cases

Morton Arboretum / GR
Complex Antibody Patients

- Warm autoantibodies
- Multiple antibodies
 - And/or nonspecific reactivity
 - Antibody to high-frequency antigen
- With or without recent RBC transfusions
- Identifying or ruling out new alloantibodies can be challenging

Autoantibodies and Alloantibodies: Often a Team

- Autoantibodies are often accompanied by alloantibodies
 - 12-40% of patients with warm autoantibodies had RBC alloantibodies (1978-1999 data, manual testing)
 - Automated testing often more sensitive for autoantibodies than tube testing
- Sickle cell patients: 25% of alloantibody patients had warm autoantibodies, vs <1% when no alloantibodies
 - Telen MJ, Transfusion 2015;55:1378
- Autoantibodies can appear when new alloantibodies develop
 - Numerous reports reviewed: Garratty G, Transfusion 2004;44:5
 - After D+ RBCs experimentally injected to D- persons
 - Sickle cell patients

Autoantibodies Mimicking Alloantibodies?

- Alloantibodies develop to transfused RBCs...
 - Then persist on patient's RBCs up to 300 days after transfusion
 - Salama A, Transfusion 1984;24:188
 - Ness PM, Transfusion 1990;30:688
- Alloantibodies that develop autoantibody reactivity?
 - Garratty G, Transfusion 2004;44:5

Autoantibodies Mimicking Alloantibodies? II

- Autoantibodies with RBC antigen specificity and
 - Loss of the antigen from the patient's own RBCs
 - Negative DAT
- Return of antigen after autoantibody resolves
- They resemble alloantibodies
- 2009 review, blood groups involved (cases reported):
 - Kell (6), Rh (3), Kidd (3), Cromer (3)
 - LW (2), Gerlich, AnW
- Possible mechanisms
 - Altered antigen or altered glycosylation
 - Loss of the entire protein
 - RBCs altered during erythropoiesis

Alloantibody to A High-Frequency Antigen, Mimicking An Autoantibody

- Consider a delayed hemolytic/serologic reaction to a high-frequency antigen (e.g., Hr, k, Kp, Dp, etc.)
- Broad plasma reactivity
- Positive direct antiglobulin test
- Eluate “pan”-reactive
- Alloabsorption at reference lab removes plasma activity
- This could look a lot like a warm autoantibody!

Potential Benefits of Genotyping with Autoantibodies/Complex Alloantibodies

- Recurrent transfusion need:
 - Delayed hemolysis?
 - Identify which alloantibodies patient could form
- “Alloantibody” may be autoantibody
 - Still need antigen-negative RBCs after antibody resolves?
- “Autoantibody” may be alloantibody
 - Antibody to high-frequency/multiple antigens, and recent transfusion?
Streamlining Future Workups In Patients With Complex Antibody Reactions

- RBC genotyping to determine antigens patient has/doesn’t have
- Focus antibody ‘rule-out’ testing:
 - Antigens for which patient is negative
- Some patients with multiple antibodies are running out of antigens to make more antibody to
 - Genotyping: which antigens are left on their ‘list’?

RBC Genotyping and Future Workload: NMH Pilot Study—ILABB Case Studies 2016

- 58 patients in study period
- 10 (17%) known to have been recently transfused
- Examined no. of screen/panel RBCs needed in future workups after genotyping available

<table>
<thead>
<tr>
<th>Followup Workups</th>
<th>Before DNA Typing</th>
<th>After DNA Typing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>9 (16%)</td>
<td>20 (34%)</td>
</tr>
<tr>
<td>Workups: Total</td>
<td>13</td>
<td>55</td>
</tr>
<tr>
<td>Mean (Range)</td>
<td>1.4 (1-3)</td>
<td>2.75 (1-11)</td>
</tr>
<tr>
<td>No. Antibodies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>31% of workups</td>
<td>55% of workups</td>
</tr>
<tr>
<td>2</td>
<td>54%</td>
<td>29%</td>
</tr>
<tr>
<td>3</td>
<td>15%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Antibody-Antigen Discrepancies

- Patient has antibody to “X”, but his/her RBCs type positive for “X”
 - Review antibody and typing workup
 - Were antibody ID and typing correct?

 - Could this be an autoantibody?
 - DAT+? Associated warm autoantibody?
 - (Note: polyclonal typing sera may be invalid)
 - Elute antibody from patient’s RBCs?

 - ‘Partial’ antigen variant, with alloantibody to normal antigen?
 - Is patient heterozygous or homozygous for the antigen?
 - Heterozygous—more likely to be a variant
 - Homozygous—would need 2 variant genes or ?null
Weak or Partial Antigen Variants

- Rh: D, C, c, E and e all may have partial variants
- Anti-e like antibodies associated with VS+ alleles

- Kidd: many variants reported in recent years in genotyping
 - Weak Jk^a or Jk^b antigens
 - Can make alloantibody to normal antigen

- Lurie Childrens’ thalassemic: delayed hemolysis, anti-Jk^a
 - Had Jk nt130G>A variant associated with weak Jk^a
 - Ramsey G et al, Transfusion 2012;52(5):143A

RhD Typing and Normal RhIG Algorithm

Prenatal Type and Screen

- RhD+: 15%
 - Each pregnancy:
 - 26-28 weeks
 - Antibody screen
 - One RhIG dose
 - Delivery
 - RhIG evaluation:
 - Antibody screen
 - Type baby:
 - D-neg: stop (40%)
 - D+: One dose RhIG
 - Screen for excess fetal bleed
 - Screen+: quantify fetal Hgb
 - Give more RhIG if indicated (0.3%)

- RhD-negative: 15%
 - Europe: fetal D genotype,
 - 12wk maternal blood;
 - D-neg (40%) -> stop
 - Ambiguous D:
 - Weak D typing
 - Discrepant D typings
 - 0.4%
 - 0.08%
 - 0.32%
 - 0.08%
 - Resolve with one-time RHD genotyping

Reasons for Ambiguous/Discrepant RhD Typings

- Variable D typing methods and reagents
- Manual or automated testing
- Multiple vendors, multiple anti-D monoclonal reagents
- Variable RHD genetics
 - Dozens of RHD genetic variants in several categories
 - Weak D: weakly reactive with IgM or only with IgG
 - Partial D: missing part of D antigen, can make anti-D
 - Weak partial D
 - Same variant may type differently depending on method
 - In same lab or across different labs
- Variable laboratory reporting of weak-D results
 - Positive, Negative, or Weak-D Positive
- Many opportunities for confusion—patients and obstetricians
COMMENTARY

It’s time to phase in RHD genotyping for patients with a serologic weak D phenotype

S. Cedric Sandler, MD, MPH; Andrew Bridges; Tracey Miller-Fiske; and Elizabeth H. Lopas

Transfusion 2015;55:680-9

AABB (American Association of Blood Banks)

College of American Pathologists

ACOG: John T. Queenan, MD, Georgetown University

Weak D typing & RhIG lab practices: Sandler SG, Arch Pathol Lab Med 2014;138:620-5

Cost-benefit analysis: Kacker S et al, Transfusion 2015;55:2095-103

Estimated US Frequencies of Weak D Variants

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>X % of D-negative all who are weak-D</th>
<th>% of Weak D's who are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All US</td>
<td>14.6%</td>
<td>3.0% 0.43%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>17.3%</td>
<td>2.3% 0.40%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>7.3%</td>
<td>10.9% 0.80%</td>
</tr>
<tr>
<td>Al-Amer</td>
<td>7.1%</td>
<td>8.0% 0.57%</td>
</tr>
<tr>
<td>Asian</td>
<td>1.7%</td>
<td>0.6% 0.01%</td>
</tr>
</tbody>
</table>

Note: With broad US diversity, anti-D risk should not be based on ethnicity.

1) South Asian <1%; East Asian <0.5% of which 10-20% are Del; Westrock C, Blood Transfus 12:3, 2014
3) Muller TH, Transfusion 41:45,2001
5) Chou ST, Blood 122:1062,2013 (sickle cell patients)

Weak or Discordant D: The AABB/CAP/ACOG Algorithm

- **Weak D** (low-strength D) ≤2+ initial test
 - Types 1,2,3
 - No RhIG
- **Discordant D**
 - Reagent-variable
 - Give RhIG

Partial D Variants

All other weak D except 1, 2 or 3

Variants with uncertain anti-D risk

Benefits of Identifying Obstetrical Patients With Weak D Types 1, 2 or 3

- RhIG management not needed in all future pregnancies
 - No antenatal 26-28-week RhIG needed
 - Often with prior repeat antibody screen
 - No postpartum neonatal RBC typing
 - No test for excess fetomaternal hemorrhage
 - No postpartum RhIG

- Transfusions can be D+ units

- Confusion resolution for patients and caregivers

RHD Weak Variant Genotyping

Table: BioArray RHD BeadChip; BCW & Grifols below

<table>
<thead>
<tr>
<th>Weak D types</th>
<th>Allo-anti-D Seen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>No</td>
</tr>
<tr>
<td>4/DAR (multiple)</td>
<td>4.0, DAR</td>
</tr>
<tr>
<td>1, 15, 41</td>
<td>Yes</td>
</tr>
<tr>
<td>9, 14/40/51, 17, 29, 34, 47</td>
<td>Not yet [but RhIG candidates]</td>
</tr>
</tbody>
</table>

- Red: BCW RhD Discrepancy Analysis: allele-specific PCR (www.bcw.edu)
- Grifols Immunohematology Center: Week D 1,2,3 sequencing assay
- Rh variant identification: allele-specific probes and sequencing

Partial-D Variant Genotyping

Table: BioArray RHD BeadChip; BCW and Grifols below

| ISBT RHD and RHCE Partial D categories: All considered at risk for anti-D |
|-----------------------------|------------------|-----------------|------------------|---------------------|
| 03 | 04 | 05 | 06 | 09 |
| Genotype | Genotype | Genotype | Genotype | Genotype |
| DII: a, b, c, 4, 6, 7 | DII: 1-4 | DII: 1,2,3 (DBS),4,6,8,9 | DII: 1-4 | DII: Weak D type 4 category |
| 14 | 16 | 17 | 19 | 25 |
| DIT: 1,2 | DCS: 1,2 | DFE: 1-4 | DMM | DNN |
| 37 | 38 | 39 | 40 | 41 |
| DAU: 1-5 | DAU: | DOL: 1-3 | DOL: | DOL: 1,2 |
| 208 | 314 | 21 | 22 | |

- BCW: Partial D Analysis (AS-PCR) includes red, plus DII-DIII
- Grifols: Rh variant identification: allele-specific probes, sequencing

Estimated US Frequencies of Weak D Variants

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>X % of D-negative all who are weak-D</th>
<th>% of Weak D's who are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All US</td>
<td>14.6%</td>
<td>3.0% 0.43%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>17.3%</td>
<td>2.3% 0.40%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>7.3%</td>
<td>10.9% 0.80%</td>
</tr>
<tr>
<td>Al-Amer</td>
<td>7.1%</td>
<td>8.0% 0.57%</td>
</tr>
<tr>
<td>Asian</td>
<td>1.7%</td>
<td>0.6% 0.01%</td>
</tr>
</tbody>
</table>

Note: With broad US diversity, anti-D risk should not be based on ethnicity.

1) South Asian <1%; East Asian <0.5% of which 10-20% are Del; Westrock C, Blood Transfus 12:3, 2014
3) Muller TH, Transfusion 41:45,2001
5) Chou ST, Blood 122:1062,2013 (sickle cell patients)
Paternal Genotyping

- Zygosity for D in partner with anti-D
- Genotyping for antigens with no commercial antisera
- Seek low-frequency antigen against which mom might have antibody
 - Baby has +DAT, mom’s screen negative
 - Mom’s crossmatch vs dad’s RBCs positive, if feasible

Fetal Genotyping

- Dad heterozygous, what is baby’s type?
 - Is pregnancy monitoring necessary?
- Amniotic fluid cells
 - American Red Cross
 - Heartland -> Blood Center of Wisconsin
- Maternal blood—cell-free fetal DNA in plasma, >10-12+ weeks
 - Widely used in Europe for D-negative moms
 - Anti-D moms, is baby D+?
 - Determine whether antenatal RhIG is needed
 - US rights held by Sequenom Labs, San Diego, CA
 - Offers fetal RhD typing on maternal blood

Post-SCT Auto- and Alloantibodies

- Warm AIHA after 533 allogeneic SCTs
- 19 cases (3.6%), 4-18 months (median 7) post-SCT
- >95% donor chimerism, peripheral blood, in 16/18 cases
- AIHA correlated only with unrelated or same-gender donors
- AIHA caused/contributed to death in 4 cases (0.8%)
 - Including one auto-anti-e (with allo-anti-E)
- 58% of AIHA patients developed plasma alloantibodies (Rh or Kell) vs. 4% of SCT patients with all-negative DATs (p<0.0001)
 - Presumed to be alloantibodies, due to high donor chimerisms, and not autoantibodies
- No genotyping was done

Allogeneic Stem Cell Transplant: Determining The Source of Alloantibody

- NMH AML patient developed anti-E after unrelated allogeneic SCT
- Peripheral blood chimerism ~50:50 donor/recipient
- Ongoing RBC transfusion need precluded serotyping
- Whose antibody was it? What if it disappeared?
 - If from donor, would need to keep on E - RBCs
 - If from recipient, and donor engrafted, E - RBCs not needed?
- Ramsey G, Zinni JG, Sumugod RD, Lindholm PF. Transfusion 2015;55(35):159A
Allogeneic Stem Cell Transplant: Determining The Source of Alloantibody

- To examine source of anti-E:
 - BioArray HEA testing:
 - SCT donor DNA from HLA Lab: E+
 - Patient DNA from buccal mucosa: E-negative
 - Anti-E was from recipient
 - (BioArray HEA not FDA-approved for buccal mucosa)
 - Ramsey G, Zinni JG, Sumugod RD, Lindholm PF. Transfusion 2015;55(3S):159A

Evolving Roles of RBC Genotyping

- “Basic-science” blood group genetics
- Rare-donor identification
- Esoteric studies of novel patients
- Frequent applications in transfusion and obstetrical care in every transfusion service

RBC Blood Group DNA Testing In/For Chicagoland (alphabetical order)

- American Red Cross, National Molecular Lab, Philadelphia, PA
 - BioArray HEA, RHD, RHCE, and lab-developed tests
- Heartland > Blood Center of Wisconsin, Milwaukee, WI
 - Lab-developed tests: www.bcw.edu
- LifeSource > Virginia Blood Services, Richmond, VA
 - Progenika ID Core XT :
 - Grifols Immunohematology Center, San Marcos, TX
 - Lab-developed tests
- Northwestern Memorial Hospital, Chicago, IL
 - BioArray HEA, and (spring 2016) RHD for weak D

RBC Blood Group Genotyping in Transfusion-Service Patients

- Sickle cell disease—broad phenotyping; Rh C status
- Complex antibody problems
 - Multiple and/or unidentified antibodies
 - High-frequency-antigen antibodies
 - Autoantibodies
- Antibody-antigen discrepancies
- Obstetrical problems
 - Maternal weak D and RhIG candidacy
 - Fetal typing; paternal D zygosity
- Allogeneic stem cell transplant antibody problems

Acknowledgments

- BioArray: Nick ("I'll-buy-a-vowel!") Maioriello
- Grifols Progenika:
 - Joann Moulds, PhD, Grifols Immun’hem Center, San Marcos, TX
 - Mindy Goldman, MD, Canadian Red Cross, Ottawa, Canada
 - Chelsea Sheppard, MD, Virginia Blood Services, Richmond, VA
- Blood Center of Wisconsin: Greg Denomme, PhD, Sue Johnson
- Northwestern Medicine Team:
 - BioArray Blood Bank Technologists
 - Jules Zinni, Karyn Hartman, Ricardo Sumugod
 - Paul Lindholm, MD
Join and Support the Mission of the ISBT
—
Apply Now!

Questions?
Bavarian Crown Jewels
Munich Treasury / GR

BioArray HEA PreciseType:
Billing for FDA-Approved In-Vitro Diagnostic Test

- Immucor USA web site
- Search for "81403"
- Web page has:
 - 1) CPT Code 81403
 - 2) Z-Code ZB04H
- Contact information at Immucor

- ICD-10 diagnosis codes being approved by Medicare carriers include various anemias such as sickle-cell, thalassemia, AIHA, renal disease, cancer, other anemias (not all listed here)